UVN SERIES
VARIABLE VOLUME VANE UNI-PUMP

UVN Series
Variable Volume Vane Uni-pump
3 to 16cm³/rev
8MPa (81.6kgf/cm²)

Features

1. Energy efficient high performance

All the performance of a vane pump, right from the low pressure range, is enhanced even further by eliminating the external drain and optimizing the pressure balance, creating a design that generates little heat.

The result is a pump that contributes to the energy efficiency of the mother machine, as well as to process precision.

2. Lightweight, compact design

The pump and motor are designed for exclusive uni-pump use, making them lightweight, compact, easy to handle, and suitable for a wide range of applications.

3. Low noise, long life

The pump and motor shaft are linked by a joint, which minimizes noise by eliminating the effects of shaft vibration and an off-center shaft. The coupling is constructed to allow constant lubrication, for friction-free long life.

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Pump Capacity cm³/rev</th>
<th>Pressure Adjustment Range MPa (kgf/cm²)</th>
<th>No-load Discharge Rate r/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>UVN-1A02-1.5-4-11</td>
<td>16.1</td>
<td>1,5 to 4.0 (15.3 to 40.8)</td>
<td>24</td>
</tr>
<tr>
<td>UVN-1A03-1.5-4-11</td>
<td>8.1</td>
<td>3,5 to 6.0 (35.7 to 61.2)</td>
<td>12</td>
</tr>
<tr>
<td>UVN-1A04-1.5-4-11</td>
<td>5.5</td>
<td>5,5 to 8.0 (56.1 to 81.6)</td>
<td>14.5</td>
</tr>
<tr>
<td>UVN-1A12-2.2-4-11</td>
<td>16.1</td>
<td>1,5 to 4.0 (15.3 to 40.8)</td>
<td>29</td>
</tr>
<tr>
<td>UVN-1A3-2.2-4-11</td>
<td>3.5</td>
<td>3,5 to 6.0 (35.7 to 61.2)</td>
<td></td>
</tr>
<tr>
<td>UVN-1A4-2.2-4-11</td>
<td>5.5</td>
<td>5,5 to 8.0 (56.1 to 81.6)</td>
<td></td>
</tr>
</tbody>
</table>

Note:
Contact your agent for combinations other than those noted above.

Understanding Model Numbers

UVN - A - B - C - D - E

- Design number
- Number of motor poles: 4 (P)
- Motor output (kW)
 - 0.7: 0.75kW
 - 1.5: 1.5kW
 - 2.2: 2.2kW
- Pressure adjustment range
 - 1: 1.5 to 4.0MPa (15.3 to 40.8kgf/cm²)
 - 3: 3.5 to 6.0MPa (35.7 to 61.2kgf/cm²)
 - 4: 5.5 to 8.0MPa (56.1 to 81.6kgf/cm²)
- Flow characteristics
 - A: Constant discharge type
- Discharge rate (At N=1800min⁻¹)
 - A: Foot type mounting
- Pump size 1: VDN-1B
- UVN Series Uni-pump

Handling
1. Installation and Piping Precautions

- Provide a mounting base of sufficient rigidity, and install so that the pump shaft is oriented horizontally.
- Make sure the flow rate of the suction piping is no more than 2m/s, and that the suction pressure at the pump suction port is in the range of -0.03 to +0.03MPa.
- Drain piping must be direct piping up to a point that is below the tank fluid level, and back pressure due to pipe resistance should not exceed 0.01MPa. Provide a suction strainer with a filtering grade of about 100 µm (150 mesh).

2. Running Precautions

- The direction of rotation is clockwise (rightward) when viewed from the motor fan side.
- At startup, repeat the inching operation (start-stop) with the pump discharge side at no-load to bleed air from the pump and suction piping.
- Equip an air bleed valve in circuits where it is difficult to bleed air before startup.

- Make sure the maximum peak pressure (setting pressure + surge pressure) during operation does not exceed 14MPa.
3. Management of Hydraulic Operating Fluid
 1. Use only good-quality hydraulic operating fluid with a kinematic viscosity at a fluid temperature of 40°C within the range of 30 to 50mm²/sec (30 to 50cSt).
 2. The operating temperature range is 15 to 60°C. When the oil temperature at startup is 15°C or less, perform a warm-up operation at low pressure until the oil temperature reaches 15°C.
 3. For the return line to the tank, use a 25µm line filter.
 4. Manage hydraulic operating fluid so contamination is maintained at class NAS10 or lower. Take care to avoid contamination with water, foreign matter, and other oil, and watch out for discoloration.

4. Setting the Pressure and Discharge Rate
 1. When adjusting pressure, pressure is increased by clockwise (rightward) rotation of the adjusting screw and decreased by counterclockwise (leftward) rotation. After adjustment is complete, securely tighten the lock nut.
 2. When adjusting the discharge rate, the rate is decreased by clockwise (rightward) rotation of the adjusting screw and decreased by counterclockwise (leftward) rotation. The graph below provides general guidelines for the relationship between the rotation angle of the flow rate adjusting screw and the no-load discharge rate. After adjustment is complete, securely tighten the lock nut.

<table>
<thead>
<tr>
<th>Factory Default Pressure Settings MPa(kgf/cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 : 3.5 (35.7)</td>
</tr>
<tr>
<td>3 : 5.0 (51.0)</td>
</tr>
<tr>
<td>4 : 7.0 (71.4)</td>
</tr>
</tbody>
</table>

3. Factory Default P-Q Settings (Standard Model)
 - Flow Rate Setting = Maximum flow rate for model as indicated in the catalog
 - Pressure Setting = Pressure shown in table below

4. The thrust screw is precision adjusted at the factory during assembly. Never touch the thrust screw.

Note: The values indicated above are at maximum pump discharge volume with the flow volume adjusting screw at the 0° position. The broken lines show the flow volume adjustment range lower limit value.

<table>
<thead>
<tr>
<th>Installation Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation method is the same as design number 10D (old design).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Output - Poles (kW-4P)</th>
<th>Motor Dimensions mm (mm)</th>
<th>Weight kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>UVN-1A-A-0.7*-4-11</td>
<td>0.75</td>
<td>20</td>
<td>90</td>
</tr>
<tr>
<td>UVN-1A-A-1.5*-4-11</td>
<td>1.5</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>UVN-1A-A-2.2*-4-11</td>
<td>2.2</td>
<td>20</td>
<td>110</td>
</tr>
</tbody>
</table>

B-40
Performance Curves

UVN-1A-*A-**-4-11
Operating Fluid: ISO VG 32
Oil temperature: 40°C

Motor selection curves

The area under a motor output curve in the graph below is the operating range for that motor under the rated output for that motor.
Example:
To find the motor that can produce pressure of 3.5MPa and a discharge rate of 12 l/min.

Selection Process
Since the intersection of the two broken lines from a pressure of 3.5MPa and discharge rate of 12 l/min intersect in the area under the 1.5kW curve, it means that a 1.5kW motor should be used.

![Discharge rate vs. Discharge pressure](image)

Motor Power Loss at Full Cutoff

![Motor axial input kW vs. Discharge pressure](image)

DR Volume at Full Cutoff

![Drain rate vs. FC setting pressure](image)